Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.337
Filtrar
1.
Langmuir ; 40(15): 7791-7811, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38451026

RESUMO

Bacteria have evolved over 3 billion years, shaping our intrinsic and symbiotic coexistence with these single-celled organisms. With rising populations of drug-resistant strains, the search for novel antimicrobials is an ongoing area of research. Advances in high-performance computing platforms have led to a variety of molecular dynamics simulation strategies to study the interactions of antimicrobial molecules with different compartments of the bacterial cell envelope of both Gram-positive and Gram-negative species. In this review, we begin with a detailed description of the structural aspects of the bacterial cell envelope. Simulations concerned with the transport and associated free energy of small molecules and ions through the outer membrane, peptidoglycan, inner membrane and outer membrane porins are discussed. Since surfactants are widely used as antimicrobials, a section is devoted to the interactions of surfactants with the cell wall and inner membranes. The review ends with a discussion on antimicrobial peptides and the insights gained from the molecular simulations on the free energy of translocation. Challenges involved in developing accurate molecular models and coarse-grained strategies that provide a trade-off between atomic details with a gain in sampling time are highlighted. The need for efficient sampling strategies to obtain accurate free energies of translocation is also discussed. Molecular dynamics simulations have evolved as a powerful tool that can potentially be used to design and develop novel antimicrobials and strategies to effectively treat bacterial infections.


Assuntos
Anti-Infecciosos , Simulação de Dinâmica Molecular , Membrana Celular/química , Parede Celular , Bactérias , Tensoativos/metabolismo , Bactérias Gram-Negativas
2.
Microb Cell Fact ; 23(1): 94, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539197

RESUMO

BACKGROUND: Surfactin, a green lipopeptide bio-surfactant, exhibits excellent surface, hemolytic, antibacterial, and emulsifying activities. However, a lack of clear understanding of the synthesis regulation mechanism of surfactin homologue components has hindered the customized production of surfactin products with different biological activities. RESULTS: In this study, exogenous valine and 2-methylbutyric acid supplementation significantly facilitated the production of C14-C15 surfactin proportions (up to 75% or more), with a positive correlation between the homologue proportion and fortified concentration. Subsequently, the branched-chain amino acid degradation pathway and the glutamate synthesis pathway are identified as critical pathways in regulating C14-C15 surfactin synthesis by transcriptome analysis. Overexpression of genes bkdAB and glnA resulted in a 1.4-fold and 1.3-fold increase in C14 surfactin, respectively. Finally, the C14-rich surfactin was observed to significantly enhance emulsification activity, achieving an EI24 exceeding 60% against hexadecane, while simultaneously reducing hemolytic activity. Conversely, the C15-rich surfactin demonstrated an increase in both hemolytic and antibacterial activities. CONCLUSION: This study presents the first evidence of a potential connection between surfactin homologue synthesis and the conversion of glutamate and glutamine, providing a theoretical basis for targeting the synthesis regulation and structure-activity relationships of surfactin and other lipopeptide compounds.


Assuntos
Ácidos Graxos , Tensoativos , Ácidos Graxos/metabolismo , Tensoativos/metabolismo , Ácido Glutâmico/metabolismo , Lipopeptídeos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Peptídeos Cíclicos/química , Bacillus subtilis/genética
3.
BMC Mol Cell Biol ; 25(1): 9, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500038

RESUMO

BACKGROUND: The alveolar epithelium is exposed to numerous stimuli, such as chemicals, viruses, and bacteria that cause a variety of pulmonary diseases through inhalation. Alveolar epithelial cells (AECs) cultured in vitro are a valuable tool for studying the impacts of these stimuli and developing therapies for associated diseases. However, maintaining the proliferative capacity of AECs in vitro is challenging. In this study, we used a cocktail of three small molecule inhibitors to cultivate AECs: Y-27632, A-83-01, and CHIR99021 (YAC). These inhibitors reportedly maintain the proliferative capacity of several types of stem/progenitor cells. RESULTS: Primary human AECs cultured in medium containing YAC proliferated for more than 50 days (over nine passages) under submerged conditions. YAC-treated AECs were subsequently cultured at the air-liquid interface (ALI) to promote differentiation. YAC-treated AECs on ALI day 7 formed a monolayer of epithelial tissue with strong expression of the surfactant protein-encoding genes SFTPA1, SFTPB, SFTPC, and SFTPD, which are markers for type II AECs (AECIIs). Immunohistochemical analysis revealed that paraffin sections of YAC-treated AECs on ALI day 7 were mainly composed of cells expressing surfactant protein B and prosurfactant protein C. CONCLUSIONS: Our results indicate that YAC-containing medium could be useful for expansion of AECIIs, which are recognized as local stem/progenitor cells, in the alveoli.


Assuntos
Alvéolos Pulmonares , Tensoativos , Humanos , Alvéolos Pulmonares/metabolismo , Diferenciação Celular , Tensoativos/metabolismo
4.
PLoS One ; 19(3): e0297889, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483982

RESUMO

OBJECTIVE: Surfactant-specific proteins (SP) are responsible for the functional and structural integrity as well as for the stabilization of the intra-alveolar surfactant. Morphological lung maturation starts in rat lungs after birth. The aim of this study was to investigate whether the expression of the hydrophilic SP-A and the hydrophobic SP-B is associated with characteristic postnatal changes characterizing morphological lung maturation. METHODS: Stereological methods were performed on the light microscope. Using immunohistochemical and molecular biological methods (Western Blot, RT-qPCR), the SP-A and SP-B of adult rat lungs and of those with different postnatal developmental stages (3, 7, 14 and 21 days after birth) were characterized. RESULTS: As signs of alveolarization the total septal surface and volume increased and the septal thickness decreased. The significantly highest relative surface fraction of SP-A labeled alveolar epithelial cells type II (AEII) was found together with the highest relative SP-A gene expression before the alveolarization (3th postnatal day). With the downregulation of SP-A gene expression during and after alveolarization (between postnatal days 7 and 14), the surface fraction of the SP-A labeled AEII also decreased, so they are lowest in adult animals. The surface fraction of SP-B labeled AEII and the SP-B gene expression showed the significantly highest levels in adults, the protein expression increased also significantly at the end of morphological lung maturation. There were no alterations in the SP-B expression before and during alveolarization until postnatal day 14. The protein expression as well as the gene expression of SP-A and SP-B correlated very well with the total surface of alveolar septa independent of the postnatal age. CONCLUSION: The expression of SP-A and SP-B is differentially associated with morphological lung maturation and correlates with increased septation of alveoli as indirect clue for alveolarization.


Assuntos
Surfactantes Pulmonares , Tensoativos , Ratos , Animais , Tensoativos/metabolismo , Surfactantes Pulmonares/metabolismo , Pulmão/metabolismo , Alvéolos Pulmonares , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Lipoproteínas/metabolismo
5.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38308506

RESUMO

An efficient microbial conversion for simultaneous synthesis of multiple high-value compounds, such as biosurfactants and enzymes, is one of the most promising aspects for an economical bioprocess leading to a marked reduction in production cost. Although biosurfactant and enzyme production separately have been much explored, there are limited reports on the predictions and optimization studies on simultaneous production of biosurfactants and other industrially important enzymes, including lipase, protease, and amylase. Enzymes are suited for an integrated production process with biosurfactants as multiple common industrial processes and applications are catalysed by these molecules. However, the complexity in microbial metabolism complicates the production process. This study details the work done on biosurfactant and enzyme co-production and explores the application and scope of various statistical tools and methodologies in this area of research. The use of advanced computational tools is yet to be explored for the optimization of downstream strategies in the co-production process. Given the complexity of the co-production process and with various new methodologies based on artificial intelligence (AI) being invented, the scope of AI in shaping the biosurfactant-enzyme co-production process is immense and would lead to not only efficient and rapid optimization, but economical extraction of multiple biomolecules as well.


Assuntos
Inteligência Artificial , Tensoativos , Tensoativos/metabolismo , Fermentação , Lipase/metabolismo , Endopeptidases
6.
J Toxicol Environ Health A ; 87(8): 357-370, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38305282

RESUMO

Sodium dodecylbenzene sulfonate (SDBS) is an important surfactant used as a cleaning agent and industrial additive to remove unwanted chemicals which have been detected in the aquatic environment. The aim of this study was to examine the toxicological potential of SDBS on the gills of adult male zebrafish (Danio rerio) exposed to this chemical. For the 96 hr acute exposure, fish were divided into three groups: control, 0.25 mg/L, and 0.5 mg/L of SDBS. After the experiment, morphophysiological analyses (gill histopathology and histochemistry), oxidative stress (determination of gill activities of superoxide dismutase (SOD) and catalase (CAT)), and hematological analyses (leukocyte differentiation) were conducted. Data demonstrated that SDBS at both tested concentrations altered the histopathological index and initiated circulatory disturbances, as well as adverse, progressive, and immunological changes in the gills. In the 0.5 mg/L group, SOD activity decreased significantly, but CAT activity was not altered. Prominent blood changes observed in this group were neutrophilia and lymphocytosis. The number of mucous and chloride cells increased significantly in both groups. Taken together, our findings demonstrated that exposure of D. rerio to SDBS, even for 96 hr, produced adverse morphological and hematological effects associated with a reduction in SOD activity. Our findings indicate that exposure of aquatic species to the anionic surfactant SDBS may lead to adverse consequences associated with oxidative stress. Therefore, this study highlights the risks that this substance may pose to aquatic ecosystems and emphasizes the need for further investigations and strict regulations on its disposal.


Assuntos
Derivados de Benzeno , Poluentes Químicos da Água , Peixe-Zebra , Animais , Masculino , Peixe-Zebra/metabolismo , Brânquias , Ecossistema , Poluentes Químicos da Água/metabolismo , Catalase/metabolismo , Catalase/farmacologia , Estresse Oxidativo , Tensoativos/metabolismo , Tensoativos/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Sódio/metabolismo , Sódio/farmacologia
7.
BMC Plant Biol ; 24(1): 138, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408911

RESUMO

Micronutrient application has a crucial role in mitigating salinity stress in crop plants. This study was carried out to investigate the effect of zinc (Zn) and boron (B) as foliar applications on fenugreek growth and physiology under salt stress (0 and 120 mM). After 35 days of salt treatments, three levels of zinc (0, 50, and 100 ppm) and two levels of boron (0 and 2 ppm) were applied as a foliar application. Salinity significantly reduced root length (72.7%) and shoot length (33.9%), plant height (36%), leaf area (37%), root fresh weight (48%) and shoot fresh weight (75%), root dry weight (80%) and shoot dry weight (67%), photosynthetic pigments (78%), number of branches (50%), and seeds per pod (56%). Fenugreek's growth and physiology were improved by foliar spray of zinc and boron, which increased the length of the shoot (6%) and root length (2%), fresh root weight (18%), and dry root weight (8%), and chlorophyll a (1%), chlorophyll b (25%), total soluble protein content (3%), shoot calcium (9%) and potassium (5%) contents by significantly decreasing sodium ion (11%) content. Moreover, 100 ppm of Zn and 2 ppm of B enhanced the growth and physiology of fenugreek by reducing the effect of salt stress. Overall, boron and zinc foliar spray is suggested for improvement in fenugreek growth under salinity stress.


Assuntos
Trigonella , Zinco , Boro/metabolismo , Boro/farmacologia , Clorofila A/metabolismo , Estresse Salino , Tensoativos/metabolismo , Tensoativos/farmacologia , Trigonella/metabolismo , Zinco/metabolismo , Zinco/farmacologia
8.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L330-L343, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252635

RESUMO

Extremely preterm infants are often exposed to long durations of mechanical ventilation to facilitate gas exchange, resulting in ventilation-induced lung injury (VILI). New lung protective strategies utilizing noninvasive ventilation or low tidal volumes are now common but have not reduced rates of bronchopulmonary dysplasia. We aimed to determine the effect of 24 h of low tidal volume ventilation on the immature lung by ventilating preterm fetal sheep in utero. Preterm fetal sheep at 110 ± 1(SD) days' gestation underwent sterile surgery for instrumentation with a tracheal loop to enable in utero mechanical ventilation (IUV). At 112 ± 1 days' gestation, fetuses received either in utero mechanical ventilation (IUV, n = 10) targeting 3-5 mL/kg for 24 h, or no ventilation (CONT, n = 9). At necropsy, fetal lungs were collected to assess molecular and histological markers of lung inflammation and injury. IUV significantly increased lung mRNA expression of interleukin (IL)-1ß, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF) compared with CONT, and increased surfactant protein (SP)-A1, SP-B, and SP-C mRNA expression compared with CONT. IUV produced modest structural changes to the airways, including reduced parenchymal collagen and myofibroblast density. IUV increased pulmonary arteriole thickness compared with CONT but did not alter overall elastin or collagen content within the vasculature. In utero ventilation of an extremely preterm lung, even at low tidal volumes, induces lung inflammation and injury to the airways and vasculature. In utero ventilation may be an important model to isolate the confounding mechanisms of VILI to develop effective therapies for preterm infants requiring prolonged respiratory support.NEW & NOTEWORTHY Preterm infants often require prolonged respiratory support, but the relative contribution of ventilation to the development of lung injury is difficult to isolate. In utero mechanical ventilation allows for mechanistic investigations into ventilation-induced lung injury without confounding factors associated with sustaining extremely preterm lambs ex utero. Twenty-four hours of in utero ventilation, even at low tidal volumes, increased lung inflammation and surfactant protein expression and produced structural changes to the lung parenchyma and vasculature.


Assuntos
Pneumonia , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Recém-Nascido , Ovinos , Animais , Lactente Extremamente Prematuro , Pulmão/metabolismo , Feto/metabolismo , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Colágeno/metabolismo , Pneumonia/patologia , Tensoativos/metabolismo , RNA Mensageiro/metabolismo
9.
Chemosphere ; 351: 141237, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242512

RESUMO

As a result of proposed global restrictions and regulations on current-use per-and polyfluoroalkyl substances (PFAS), research on possible alternatives is highly required. In this study, phase I in vitro metabolism of two novel prototype PFAS in human and rat was investigated. These prototype chemicals are intended to be safer-by-design and expected to mineralize completely, and thus be less persistent in the environment compared to the PFAS available on the market. Following incubation with rat liver S9 (RL-S9) fractions, two main metabolites per initial substance were produced, namely an alcohol and a short-chain carboxylic acid. While with human liver S9 (HL-S9) fractions, only the short-chain carboxylic acid was detected. Beyond these major metabolites, two and five additional metabolites were identified at very low levels by non-targeted screening for the ether- and thioether-linked prototype chemicals, respectively. Overall, complete mineralization during the in vitro hepatic metabolism of these novel PFAS by HL-S9 and RL-S9 fractions was not observed. The reaction kinetics of the surfactants was determined by using the metabolite formation, rather than the substrate depletion approach. With rat liver enzymes, the formation rates of primary metabolite alcohols were at least two orders of magnitude higher than those of secondary metabolite carboxylic acids. When incubating with human liver enzymes, the formation rates of single metabolite carboxylic acids, were similar or smaller than those experienced in rat. It also indicates that the overall metabolic rate and clearance of surfactants are significantly higher in rat liver than in human liver. The maximum formation rate of the thioether congener exceeded 10-fold that of the ether in humans but were similar in rats. Overall, the results suggest that metabolism of the prototype chemicals followed a similar trend to those reported in studies of fluorotelomer alcohols.


Assuntos
Fluorocarbonos , Fígado , Ratos , Humanos , Animais , Fígado/metabolismo , Éteres , Ácidos Carboxílicos/metabolismo , Sulfetos/metabolismo , Tensoativos/metabolismo , Fluorocarbonos/metabolismo
10.
Environ Sci Technol ; 58(3): 1452-1461, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38214086

RESUMO

Cationic surfactants are used in many industrial processes and in consumer products with concurrent release into the aquatic environment, where they may accumulate in aquatic organisms to regulatoryly relevant thresholds. Here, we aimed to better understand the bioconcentration behavior of three selected cationic surfactants, namely N,N-dimethyldecylamine (T10), N-methyldodecylamine (S12), and N,N,N-trimethyltetradecylammonium cation (Q14), in the cells of fish liver (RTL-W1) and gill (RTgill-W1) cell lines. We conducted full mass balances for bioconcentration tests with the cell cultures, in which the medium, the cell surface, the cells themselves, and the plastic compartment were sampled and quantified for each surfactant by HPLC MS/MS. Accumulation in/to cells correlated with the surfactants' alkyl chain lengths and their membrane lipid-water partitioning coefficient, DMLW. Cell-derived bioconcentration factors (BCF) of T10 and S12 were within a factor of 3.5 to in vivo BCF obtained from the literature, while the cell-derived BCF values for Q14 were >100 times higher than the in vivo BCF. From our experiments, rainbow trout cell lines appear as a suitable conservative in vitro screening method for bioconcentration assessment of cationic surfactants and are promising for further testing.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Bioacumulação , Espectrometria de Massas em Tandem , Tensoativos/metabolismo , Oncorhynchus mykiss/metabolismo , Linhagem Celular , Poluentes Químicos da Água/metabolismo
11.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226623

RESUMO

Mutations in ATP-binding cassette A3 (ABCA3), a phospholipid transporter critical for surfactant homeostasis in pulmonary alveolar type II epithelial cells (AEC2s), are the most common genetic causes of childhood interstitial lung disease (chILD). Treatments for patients with pathological variants of ABCA3 mutations are limited, in part due to a lack of understanding of disease pathogenesis resulting from an inability to access primary AEC2s from affected children. Here, we report the generation of AEC2s from affected patient induced pluripotent stem cells (iPSCs) carrying homozygous versions of multiple ABCA3 mutations. We generated syngeneic CRISPR/Cas9 gene-corrected and uncorrected iPSCs and ABCA3-mutant knockin ABCA3:GFP fusion reporter lines for in vitro disease modeling. We observed an expected decreased capacity for surfactant secretion in ABCA3-mutant iPSC-derived AEC2s (iAEC2s), but we also found an unexpected epithelial-intrinsic aberrant phenotype in mutant iAEC2s, presenting as diminished progenitor potential, increased NFκB signaling, and the production of pro-inflammatory cytokines. The ABCA3:GFP fusion reporter permitted mutant-specific, quantifiable characterization of lamellar body size and ABCA3 protein trafficking, functional features that are perturbed depending on ABCA3 mutation type. Our disease model provides a platform for understanding ABCA3 mutation-mediated mechanisms of alveolar epithelial cell dysfunction that may trigger chILD pathogenesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Doenças Pulmonares Intersticiais , Células-Tronco Pluripotentes , Humanos , Células Epiteliais Alveolares/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Pulmão/patologia , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Mutação , Células-Tronco Pluripotentes/metabolismo , Tensoativos/metabolismo
12.
Bioresour Technol ; 393: 130065, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984671

RESUMO

To improve the efficiency of aerobic digestion, this investigation utilized the synergistic effect of lysozyme-producing strain YH14 and surfactant-producing strain ZXY4 to promote sludge hydrolysis, and added NaCl to enhance this promoting effect. The best performance in promoting sludge hydrolysis was achieved when the inoculum of functional bacteria was 12 % (inoculum ratio of strain YH14: strain ZXY4 = 1:3) and the dosage of NaCl was 5 g L-1, which caused an increase of 19.25 % in the SS removal rate and 2588.21 mg L-1 in the SCOD release, as compared with the control. Fluorescence region integral analysis shows that the synergy of two functional bacteria and NaCl can enhance the biodegradability of sludge. Protein secondary structure analysis shows that strain ZXY4 and Na+ cause the EPS structure to loosen, increasing the chances of lysozyme lysis of bacteria. Nucleotide metabolism, metabolism of other amino acids and membrane transport enhanced in a co-processing system.


Assuntos
Muramidase , Esgotos , Muramidase/metabolismo , Esgotos/microbiologia , Tensoativos/metabolismo , Cloreto de Sódio/metabolismo , Eliminação de Resíduos Líquidos , Bactérias/metabolismo , Hidrólise
13.
Microbiol Res ; 279: 127551, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016380

RESUMO

Agriculture in the 21st century faces grave challenges to meet the unprecedented food demand of the burgeoning population as well as reduce the ecological footprint for achieving sustainable development goals. The extensive use of harsh synthetic surfactants in pesticides and the agrochemical industry has substantial adverse impacts on the soil and environment due to their toxic and non-biodegradable nature. Biosurfactants derived from plant, animal, and microbial sources can be an eco-friendly alternative to chemical surfactants. Microbes producing biosurfactants play a noteworthy role in biofilm formation, plant pathogen elimination, biodegradation, bioremediation, improving nutrient bioavailability, and can thrive well under stressful environments. Microbial biosurfactants are well suited for heavy metal and organic contaminants remediation in agricultural soil due to their low toxicity, high activity at fluctuating temperatures, biodegradability, and stability over a wide array of environmental conditions. This green technology will improve the agricultural soil quality by increasing the soil flushing efficiency, mobilization, and solubilization of nutrients by forming metal-biosurfactant complexes, and through the dissemination of complex nutrients. Such characteristics help it to play a pivotal role in environmental sustainability in the foreseeable future, which is required to increase the viability of biosurfactants for extensive commercial uses, making them accessible, affordable, and economically sustainable.


Assuntos
Agricultura , Solo , Plantas/metabolismo , Biodegradação Ambiental , Tensoativos/metabolismo
14.
J Colloid Interface Sci ; 657: 352-362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38043237

RESUMO

Oleosins are proteins with a unique central hydrophobic hairpin designed to stabilize lipid droplets (oleosomes) in plant seeds. For efficient droplet stabilization, the hydrophobic hairpin with a strong affinity for the apolar droplet core is flanked by hydrophilic arms on each side. This gives oleosins a unique surfactant-like shape making them a very interesting protein. In this study, we tested if isolated oleosins retain their ability to stabilize oil-in-water emulsions, and investigated the underlying stabilization mechanism. Due to their surfactant-like shape, oleosins when dispersed in aqueous buffers associated to micelle-like nanoparticles with a size of ∼33 nm. These micelles, in turn, clustered into larger aggregates of up to 20 µm. Micelle aggregation was more extensive when oleosins lacked charge. During emulsification, oleosin micelles and micelle aggregates dissociated and mostly individual oleosins adsorbed on the oil droplet interface. Oleosins prevented the coalescence of the oil droplets and if sufficiently charged, droplet flocculation as well.


Assuntos
Micelas , Proteínas de Plantas , Proteínas de Plantas/química , Tensoativos/metabolismo , Sementes/química
15.
Dev Biol ; 506: 64-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081502

RESUMO

INTRODUCTION: After birth, the lungs must resorb the fluid they contain. This process involves multiple actors such as surfactant, aquaporins and ENaC channels. Preterm newborns often exhibit respiratory distress syndrome due to surfactant deficiency, and transitory tachypnea caused by a delay in lung liquid resorption. Our hypothesis is that surfactant, ENaC and aquaporins are involved in respiratory transition to extrauterine life and altered by preterm birth. We compared these candidates in preterm and term fetal sheeps. MATERIALS AND METHODS: We performed cesarean sections in 8 time-dated pregnant ewes (4 at 100 days and 4 at 140 days of gestation, corresponding to 24 and 36 weeks of gestation in humans), and obtained 13 fetal sheeps in each group. We studied surfactant synthesis (SP-A, SP-B, SP-C), lung liquid resorption (ENaC, aquaporins) and corticosteroid regulation (glucocorticoid receptor, mineralocorticoid receptor and 11-betaHSD2) at mRNA and protein levels. RESULTS: The mRNA expression level of SFTPA, SFTPB and SFTPC was higher in the term group. These results were confirmed at the protein level for SP-B on Western Blot analysis and for SP-A, SP-B and SP-C on immunohistochemical analysis. Regarding aquaporins, ENaC and receptors, mRNA expression levels for AQP1, AQP3, AQP5, ENaCα, ENaCß, ENaCγ and 11ßHSD2 mRNA were also higher in the term group. DISCUSSION: Expression of surfactant proteins, aquaporins and ENaC increases between 100 and 140 days of gestation in an ovine model. Further exploring these pathways and their hormonal regulation could highlight some new explanations in the pathophysiology of neonatal respiratory diseases.


Assuntos
Aquaporinas , Nascimento Prematuro , Gravidez , Humanos , Animais , Ovinos , Feminino , Tensoativos/metabolismo , Nascimento Prematuro/metabolismo , Pulmão/metabolismo , Aquaporinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
An Acad Bras Cienc ; 95(3): e20221023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055498

RESUMO

In the current study, the solubility and permeability of Osthole-loaded microemulsion were enhanced, which increased bioavailability. In addition, Carbomer 940 was added for prolonged drug delivery. The microemulsion was prepared after the screening of Kukui oil, Labrasol (surfactant), and transcutol-P (co-surfactant). Pseudoternary phase diagrams were employed to find the microemulsion region. Box Behnken Design (BBD) was employed for optimizing microemulsions. Variables were related and compared using mathematical equations and response surface plots (RSP). MEBG was then compared with control gel on the basis of stability studies, drug permeation, skin irritation studies, and anti-inflammatory studies. Microemulsion preparations depicted a pH of 5.27 - 5.80, a conductivity of 139 - 185 µS/cm, a poly-dispersity index of 0.116 - 0.388, a refractive index of 1.330 - 1.427, an average droplet size of 64 - 89 nm, homogeneity, spherical shape, viscosity 52 - 185 cP. Predicted values of Optimized microemulsions showed more reasonable agreement than experimental values. The microemulsion was stable and non-irritating on Rabbit skin. MEBG showed a significant difference from control gel for percent edema inhibition from the standard. The permeation enhancing capability of MEBG using a suitable viscosity fabricates it promising carrier for transdermal delivery of Osthole.


Assuntos
Absorção Cutânea , Pele , Animais , Coelhos , Administração Cutânea , Tensoativos/metabolismo , Emulsões/metabolismo
17.
Bioprocess Biosyst Eng ; 46(12): 1837-1845, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924351

RESUMO

Severe butanol toxicity to the metabolism of solventogenic clostridia significantly impede the application of fermentative butanol as a biofuel. Liquid-liquid extraction is an efficient method to reduce the butanol toxicity by in-situ removing it in the extractant phase. Butanol mass transfer into extractant phase in static acetone-butanol-ethanol (ABE) extractive fermentation with biodiesel as the extractant could be enhanced by adding a tiny amount of surfactant such as tween-80. In the case of corn-based ABE extractive fermentation by Clostridium acetobutylicum ATCC 824 using biodiesel originated from waste cooking oil as extractant, addition of 0.14% (w/v) tween-80 could increase butanol production in biodiesel and total solvents production by 21% and 17%, respectively, compared to those of control under non-surfactant existence. Furthermore, a mathematical model was developed to elucidate the mechanism of enhanced ABE extractive fermentation performance. The results indicated that the mass transfer improvement was obtained by effectively altering the physical properties of the self-generated bubbles during ABE extractive fermentation, such as reducing bubble size and extending its retention time in extractant phase, etc. Overall, this study provided an efficient approach for enhancing biobutanol production by integration of bioprocess optimization and model interpretation.


Assuntos
Butanóis , Clostridium acetobutylicum , Butanóis/metabolismo , Acetona/metabolismo , Fermentação , Tensoativos/metabolismo , Polissorbatos/metabolismo , Biocombustíveis , Etanol/metabolismo , 1-Butanol/metabolismo
18.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37793812

RESUMO

AIM: Dark septate endophytes (DSE) were widely used in the agriculture and ecological restoration. The objective of this work was to assess the effect of culture media nonionic surfactant and emulsifier on the biomass and metabolites of DSE strain Alternaria sp. 17463. METHODS AND RESULTS: Changes in the composition of DSE metabolites following the addition of Tween 80 during liquid culture of a DSE fungus were analyzed and used in growth tests of alfalfa.Shaking flask fermentation was carried out and the surfactant was fed to the fungus during the fermentation. The residual sugar content and pH declined significantly in the medium and the biomass of DSE increased by 7.27% over controls with no surfactant. Metabolomic analysis showed that adding the surfactant significantly increased the content of 63 metabolites (P < 0.05). These include lipids and lipid-like molecules, organooxygen compounds, amino acids and organic acids, and flavonoids. Enrichment analysis of metabolic pathways indicates that surfactant addition promoted carbohydrate metabolism and amino acid synthesis. A plant hydroponic experiment indicated that these changes in metabolites altered the root structure of alfalfa seedlings. They also promoted significant increases in root length and root surface area, and increased alfalfa total biomass by 50.2%. CONCLUSIONS: The addition of the surfactant promoted sugar utilization by the DSE fungus and increased the synthesis of lipids and amino acids, resulting in the ability of the fungal metabolites to change root structure and promote plant growth.


Assuntos
Alternaria , Endófitos , Endófitos/metabolismo , Medicago sativa , Raízes de Plantas/microbiologia , Tensoativos/farmacologia , Tensoativos/metabolismo , Aminoácidos/metabolismo , Açúcares/metabolismo , Lipídeos
19.
Mol Ther ; 31(12): 3457-3477, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37805711

RESUMO

Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.


Assuntos
Doxiciclina , Edição de Genes , Camundongos , Animais , Dependovirus/genética , Vetores Genéticos/genética , RNA Guia de Sistemas CRISPR-Cas , Pulmão/metabolismo , Tensoativos/metabolismo , Sistemas CRISPR-Cas
20.
J Environ Manage ; 348: 119207, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832293

RESUMO

The combustion of mobil oil leads to the emission of toxic compounds in the environment. In this study, the aromatic and aliphatic hydrocarbon fractions present in a waste mobil oil collected from automobile market were comprehensively identified and their toxicity was evaluated using wheat grain. Lysinibacillus sphaericus strain IITR51 isolated and characterized previously could degrade 30-80% of both aliphatic and aromatic hydrocarbons in liquid culture. Interestingly, the strain IITR51 produced 627 mg/L of rhamnolipid biosurfactant by utilizing 3% (v/v) of waste mobil oil in the presence of 1.5% glycerol as additional carbon source. In a soil microcosm study by employing strain IITR51, 50-86% of 3-6 ring aromatic hydrocarbons and 63-98% of aliphatic hydrocarbons (C8 to C22) were degraded. Addition of 60 µg/mL rhamnolipid biosurfactant enhanced the degradation of both aliphatic and aromatic hydrocarbons from 76.88% to 61.21%-94.11% and 78.27% respectively. The degradation of mobil oil components improved the soil physico-chemical properties and increased soil fertility to 64% as evident by the phytotoxicity assessments. The findings indicate that strain IITR51 with degradation capability coupled with biosurfactant production could be a candidate for restoring hydrocarbon contaminated soils.


Assuntos
Hidrocarbonetos Aromáticos , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Tensoativos/metabolismo , Solo/química , Poluentes do Solo/química , Hidrocarbonetos/metabolismo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...